JAV-02562

Bradarić, M., Bouten, W., Fijn, R. C., Krijgsveld, K. L. and Shamoun-Baranes, J. 2020. Winds at departure shape seasonal patterns of nocturnal bird migration over the North Sea. – J. Avian Biol. 2020: e02562

Supplementary material

Supplement

Table S1. Results of the sensitivity analysis performed to test if distributions of potential departure locations differed when the back-trajectory model was run with the wind data from different pressure levels (850 hPa, 925 hPa and 1000 hPa). Earth mover's distance (EMD) is used to compare distributions calculated with the wind data from different pressure levels. Identical distributions have EMD value of 0. The largest differences are generally between simulations at 1000mb and 850mb.

Dav + N	Pressure level 925 1000			Dav +N	Pressure level	925 1000			
	050	0.0021	0.0025		050	0.0024	0.2000		
02/10/2007 N=7599	850	0.0021	0.0025	11/03/2009	850	0.0024	0.3980		
	925	-	0	N=6913	925	-	0.2386		
10/10/2007 N=11454	850	0.1771	0.1029		850	0.0005	0.2393		
	925	-	0.0022	12/03/2009 N=1765	925	-	0.1560		
12/10/2007 N=8735	850	0.0755	0.1631		850	0.0589	0.0943		
	925	-	0.1384	14/03/2009 N=1922	925	-	0.0750		
13/10/2007 N=15373	850	0.0720	0.4216		850	0.2888	0.3437		
	925	-	0.2128	15/03/2009 N=39821	925	-	0.2262		
19/10/2007 N=11739	850	0	0.0061		850	0.0460	0.2185		
	925	-	0.0736	16/03/2009 N=4289	925	-	0.2053		
	850	0.0008	0.3539		850	0.0091	0.3443		
21/10/2007 N=12752	925	-	0.2166	14/03/2010 N=6241	925	-	0.3699		
	850	0.1499	0.4855		850	0.3282	0.5508		
14/03/2008 N=11687	925	-	0.2519	16/03/2010 N=10529	925	-	0.0834		
27/03/2008 N=19029	850	0.2506	0.4171		850	0	0.1459		
	925	-	0.0062	17/03/2010 N=9093	925	-	0.1028		
22/04/2008 N=2660	850	0.0183	0.0080		850	-0.0022	0.01497		
	925	-	0.0039	21/03/2010 N=19045	925	-	0.1323		
29/10/2008 N=20306	850	0.0040	0.0661		850	-0.0093	0.6129		
	925	-	0.0080	22/03/2010 N=2819	925	-	0.6608		
	850	0.0027	0.0004		850	0.1007	-0.0021		
30/10/2008 N=46729	925	-	0	26/03/2010 N=5424	925	-	0.0089		

Figure S1. The daily proportion of trajectories tracked back to potential departure locations in the spring (a) and autumn (b) migratory seasons

While figure 4 shows the potential departure areas aggregated for all nights of intense migration, the spatial distribution of departure locations does differ among nights. Figure S2 shows daily distributions of potential departure locations of birds for two nights of intense migration in spring (Figure S2a and S2b) and autumn (Figure S2c and S2d). To demonstrate differences among nights, we intentionally selected two nights in which we observe some deviations from the seasonal pattern (Figure S2a and S2c) and two nights that reflect the seasonal distribution of intense migration (Figure S2b and S2d).

On 22/04/2008 ~50% of the trajectories were tracked back to Belgium and France (Figure S2a, bar plot). Trajectories estimated to originate from these two countries had a heading towards north and north-east. The distribution of headings on this night was multi-modal with a mean of 65.08° (r=0.3) (Figure S2a, rose plot; Table S2), while the mean wind direction was 285.12° (r=0.81). The resulting departure locations were quite dispersed (Figure S2a). Figure S2b shows the individual trajectories in the night of 15/03/2009 which was the most intense spring migration night during this study (N=39821). Approximately 80% of the trajectories on this night were tracked back to the southern UK and Ireland (Figure S2b, bar plot) with a mean heading of 90.44° (r=0.84), which corresponds with seasonal patterns (Figure S2b, rose plot; Table S2). On this night, winds were supporting with a mean wind direction of 107.62° (r=0.89).

On 30/10/2008 we see the arrival of birds that come from Norway and cross the North Sea from north to south (Figure S2c), which is not something we commonly observed in autumn (Figure 4b). Moreover, this night was also the night with the highest number of migrants for the autumn season (*N*=46729). The mean heading of the trajectories was 225.88° (*r*=0.84) and the mean wind direction was 209.47 (*r*=0.89), corresponding with the seasonal patterns. Migration patterns on 13/10/2007 reflect the general pattern observed for intense migration in autumn (Figure S2c). The mean heading was 219.05° (*R*=0.85) (Figure S2c, rose plot; Table S2) and birds mainly departed from the Netherlands and Germany (Figure S2c, bar plot). Even though sidewinds prevailed with a mean direction of 349.44°, the mean wind speed (4.25 m/s), was the lowest for all nights (Table S2). Summary statistics of the individual nights of intense migration is available in Table S2.

Figure S2. Simulated trajectories (silver lines) and departure locations (blue-green dots) on 22nd of April 2008 (a), 15th of March 2009 (b), 30th of October 2008 (c) and 13th of October 2007 (c). The red dot on a map represents the radar location. Bar in the upper left corner of each plot shows the proportion of trajectory origins, while the rose plot provides the distribution of headings on each respective night.

Table S2. Summary statistics of the trajectories at the potential departure locations on individual days. For directional data means are circular means and angular deviation (AD) is presented instead of SD. Value of mean resultant length R closer to 1 indicates higher concentration in directions (Jammalamadaka and SenGupta 2001, Kutil 2012). Dates shown in Figure S2 are highlighted.

Date	N	Tra direct (degr	ck tion ees)	Groun (m	dspeed /s)	Heading (degrees)		Airspeed		Wind direction (degrees)		Wind speed (m/s)		Wind assistance (m/s)	
		Mean	R	Mean	SD	Mean	R	Mean	SD	Mean	R	Mean	SD	Mean	SD
02/10/2007	7599	192.6	0.6	18.6	4.1	190.0	0.6	17.4	3.7	245.8	0.3	4.3	2.1	0.8	3.1
10/10/2007	11454	203.0	0.7	17.3	3.9	221.2	0.6	14.9	3.5	162.5	0.7	5.8	2.8	1.4	2.7
12/10/2007	8735	214.7	0.7	20.6	5.4	227.3	0.6	15.6	3.9	190.5	0.7	8.0	2.9	4.1	4.6
13/10/2007	15373	222.3	0.7	16.6	3.8	219.0	0.8	17.9	3.3	349.4	0.6	4.2	2.3	-1.6	2.9
19/10/2007	11739	199.7	0.7	19.1	4.5	211.1	0.6	15.1	4.4	178.8	0.7	6.7	3.1	3.2	3.6
21/10/2007	12752	229.0	0.6	18.7	5.2	213.2	0.6	16.4	4.1	297.6	0.7	6.8	2.4	1.3	4.5
14/03/2008	11687	100.6	0.8	20.4	4.3	114.5	0.8	17.7	3.4	49.2	0.8	6.4	2.1	1.9	3.0
27/03/2008	19029	104.4	0.8	16.3	3.8	110.2	0.8	14.6	3.2	80.6	0.6	4.6	1.8	1.3	3.1
22/04/2008	2660	4.5	0.1	15.2	5.5	65.0	0.3	14.9	5.0	285.1	0.8	7.5	3.2	-0.9	5.6
29/10/2008	20306	231.0	0.7	16.2	6.2	234.8	0.8	18.9	4.1	43.2	0.6	6.0	4.6	-3.5	5.1
30/10/2008	46729	220.6	0.8	20.7	5.4	225.8	0.8	15.7	3.9	209.4	0.8	6.3	3.9	4.3	3.1
11/03/2009	6913	95.8	0.7	20.2	5.3	117.1	0.6	14.3	4.8	73.3	0.9	10.2	2.0	4.1	5.3
12/03/2009	1765	89.3	0.7	22.6	5.6	53.8	0.6	13.7	4.4	111.3	1.0	15.1	1.3	5.3	8.4
14/03/2009	1922	82.2	0.8	23.2	6.0	38.0	0.7	16.5	5.1	121.5	1.0	16.3	1.8	1.5	8.5
15/03/2009	39821	89.5	0.8	22.3	5.3	90.4	0.8	18.7	3.9	107.6	0.7	6.1	3.3	2.9	3.5
16/03/2009	4289	96.9	0.5	17.5	4.7	102.3	0.4	13.1	4.4	92.9	0.8	7.1	3.3	3.6	4.7
14/03/2010	6241	86.8	0.8	20.8	5.7	58.0	0.7	18.0	4.1	144.4	0.9	10.3	3.3	0.4	6.1
16/03/2010	10529	76.1	0.8	20.6	5.1	101.4	0.8	15.4	4.0	37.1	0.9	9.8	2.5	3.2	4.4
17/03/2010	9093	74.1	0.9	20.5	4.7	100.5	0.7	13.5	4.5	48.7	0.9	11.6	2.3	4.2	5.1
21/03/2010	19045	84.2	0.9	22.3	4.8	105.4	0.8	16.8	3.9	50.5	0.9	9.8	3.2	3.5	3.7
22/03/2010	2819	86.2	0.8	25.7	5.8	103.1	0.7	16.6	4.7	68.2	0.9	13.1	3.5	6.8	6.5
26/03/2010	5424	73.0	0.8	25.3	7.4	102.3	0.7	17.8	4.7	35.0	0.9	14.0	4.0	4.3	7.9