Journal of Avian Biology

# Supplementary material

## JAV-02475

Pedersen, L., Onrubia, A., Vardanis, Y., Barboutis, C., Waasdorp, S., van Helvert, M., Geertsma, M., Ekberg, P., Willemoes, M., Strandberg, R., Matsyna, E., Matsyna, A., Klaassen, R. H. G., Alerstam, T., Thorup, K. and Tøttrup, A. P. 2020. Remarkably similar migration patterns between different red-backed shrike populations suggest that migration rather than breeding area phenology determines the annual cycle. – J. Avian Biol. 2020: e02475

## **1** Supplementary material Appendix 1

2

Remarkably similar migration patterns between different red-backed shrike
populations suggest that migration rather than breeding area phenology
determines the annual cycle

6

## 7 Geolocator deployment and retrieval

We used light-level geolocators (Mk10s, Mk10 and Mk12 developed by the British Antarctic 8 9 Survey, BAS, weight: 1.1g and P65 from Migrate Technology, weight: 0.75g) to determine geographical locations of staging sites and timing of arrival and departure events of individual red-10 backed shrikes throughout the annual cycle. During eight years (2009 - 2016) a total of 402 11 individual red-backed shrikes were caught at six breeding populations across a wide latitudinal and 12 longitudinal span of the breeding range of red-backed shrikes using spring-traps or mist-nets in 13 14 close proximity to the nesting sites (table 1). 15 A total of 59 birds returned to the breeding site in Gribskov (39, return rate 24%), Spain (11, return 16 rate 18%), the Netherlands (5, return rate 25%) and Greece (4, return rate 22%). These return rates correspond to a control group of red-backed shrikes marked with colour rings at the main study- and 17 breeding site Gribskov in Denmark 2016-2017 (15, return rate 27%). Return rates could not be 18 assessed with any certainty for the Swedish and Russian breeding sites due to inconsistent search 19 efforts between years. As some individuals had lost their geolocator and other loggers had failed, 20 we present a total of 48 tracks of 39 individual red-backed shrikes (table 1). Nine of these are 21 repeated tracks; seven males from the southern Scandinavian breeding population and two males 22 from the Spanish breeding population. 23

24

## 25 Light data analyses

Tracking data from the southern Scandinavian and Spanish breeding populations have been 26 analysed before and published with a different purpose (Tøttrup et al. 2012b, a, 2017, Pedersen et 27 al. 2016, 2018). Data were adjusted for clock drift, and false twilight events caused by shading were 28 29 removed by visual inspection of a plot comparing the specific twilight with the twilight on the previous and following day using the R-package BAStag version 0.1-3 (Wotherspoon et al. 2016). 30 We chose a threshold value of 2 for BAS geolocators and 0.3 for log-transformed data for the 31 32 Intigeo geolocators, corresponding to the sun being well below the horizon, to define twilight occurrences. Between 0 and 50 false twilight events were removed from the data for each track 33 34 (Supplementary material Appendix table A1). The occurrence of false twilights seemed to be roughly evenly distributed across the year. As breeding site habitat varied between populations, we 35 used a Hill-Ekstrom calibration to ensure consistency among tracks (Hill and Braun 2001, Ekstrom 36 37 2004). Sun elevation angles varied from -5.5 - 0 (Supplementary material Appendix table A1). Two daily positions were estimated from day length and local noon and midnight, respectively, using the 38 R-package *GeoLight* version 2.0 (Lisovski and Hahn 2012). During equinoxes, where day length is 39 approximately the same, estimation of latitude becomes unreliable. Thus, we excluded latitudinal 40 data from 14 to 26 days on both sides of equinox for each individual track based on visual 41 42 inspection of a plot of latitude against time (Supplementary material Appendix table A1)

- 44 Summary information on geolocators and data cleaning for each individual using the R package *BAStag* version 0.1-3
- 45 (Wotherspoon et al. 2016). Removed false twilights for each individual were roughly equally distributed throughout the
- 46 annual cycle. Sun elevation angles are based on Hill-Ekström calibration. Tolerance determines the number of days
- 47 excluded during equinox periods (Lisovski and Hahn 2012).

| Logger ID  | Population           | Sex    | Logger type                  | Storing time<br>(mins) | Threshold | False sunrises | False sunsets | Total false<br>twilights<br>removed | Sun elevation<br>angle | Tolerance |
|------------|----------------------|--------|------------------------------|------------------------|-----------|----------------|---------------|-------------------------------------|------------------------|-----------|
| 48.1       | southern Scandinavia | male   | BAS mk10, no stalk, 1.1g     | 2                      | 2         | 14             | 20            | 34                                  | -3.5                   | 0.1       |
| 48.2       | southern Scandinavia | male   | BAS mk10, no stalk, 1.1g     | 2                      | 2         | . 6            | 3             | 9                                   | -3.5                   | 0.13      |
| 28         | southern Scandinavia | male   | BAS mk10, no stalk, 1.1g     | 2                      | 2         | 25             | 21            | 46                                  | -1                     | 0.1       |
| 20156      | southern Scandinavia | male   | BAS mk10s, stalk, 1.1g       | 10                     | 2         | 2 7            | 10            | 17                                  | -                      | -         |
| 20157      | southern Scandinavia | female | BAS mk10s, stalk, 1.1g       | 10                     | 2         | 5              | 8             | 13                                  | -5                     | 0.1       |
| 20200      | southern Scandinavia | male   | BAS mk10s, stalk, 1.1g       | 10                     | 2         | 5              | 6             | 11                                  | -5                     | 0.1       |
| 20216      | southern Scandinavia | male   | BAS mk10s, stalk, 1.1g       | 10                     | 2         | 12             | 21            | 33                                  | -4.5                   | 0.11      |
| 20204      | southern Scandinavia | male   | BAS mk10s, stalk, 1.1g       | 10                     | 2         | 4              | 15            | 19                                  | -5                     | 0.11      |
| 20268      | southern Scandinavia | male   | BAS mk10s, stalk, 1.1g       | 10                     | 2         | 6              | 4             | 10                                  | -5                     | 0.17      |
| 20263      | southern Scandinavia | male   | BAS mk10s, stalk, 1.1g       | 10                     | 2         | 32             | 18            | 50                                  | -5                     | 0.11      |
| 20231      | southern Scandinavia | male   | BAS mk10s, stalk, 1.1g       | 10                     | 2         | -              | -             | -                                   | -                      | -         |
| 13802      | southern Scandinavia | male   | BAS mk12, 8 mm stalk, 1.1g   | 2                      | 2         | 9              | 11            | 20                                  | -3.5                   | 0.13      |
| 20264      | southern Scandinavia | female | BAS mk10s, stalk, 1.1g       | 10                     | 2         | 11             | 16            | 27                                  | -5                     | 0.12      |
| 20252      | southern Scandinavia | female | BAS mk10s, stalk, 1.1g       | 10                     | 2         | 30             | 13            | 43                                  | -5.5                   | 0.14      |
| 20257      | southern Scandinavia | male   | BAS mk10s, stalk, 1.1g       | 10                     | 2         | 12             | 11            | 23                                  | -5                     | 0.12      |
| 13813      | southern Scandinavia | male   | BAS mk12, 8 mm stalk, 1.1g   | 2                      | 2         | 13             | 11            | 24                                  | -1.5                   | 0.14      |
| 229        | southern Scandinavia | female | BAS mk12, 8 mm stalk, 1.1g   | 2                      | 2         | 11             | 2             | 13                                  | -2                     | 0.13      |
| 212        | southern Scandinavia | male   | BAS mk12, 8 mm stalk, 1.1g   | 2                      | 2         | ! 10           | 7             | 17                                  | -2                     | 0.13      |
| 211        | southern Scandinavia | female | BAS mk12, 8 mm stalk, 1.1g   | 2                      | 2         | 2 7            | 12            | 19                                  | -3                     | 0.12      |
| 70         | southern Scandinavia | female | BAS mk10, stalk, 1.1g        | 5                      | 2         | 15             | 18            | 33                                  | -2.5                   | 0.1       |
| 19         | southern Scandinavia | male   | BAS mk10, stalk, 1.1g        | 5                      | 2         | 21             | 18            | 39                                  | -2.5                   | 0.13      |
| 14         | southern Scandinavia | male   | BAS mk10, stalk, 1.1g        | 5                      | 2         | 20             | 19            | 39                                  | -2                     | 0.11      |
| 504        | southern Scandinavia | male   | BAS mk10, no stalk, 1.1g     | 2                      | 2         | . 8            | 5             | 13                                  | -1                     | 0.12      |
| 35         | southern Scandinavia | male   | BAS mk10, no stalk, 1.1g     | 2                      | 2         | 13             | 21            | 34                                  | -1                     | 0.12      |
| F121       | southern Scandinavia | male   | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 0              | 4             | 4                                   | -2                     | 0.13      |
| F123       | southern Scandinavia | female | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 1              | 5             | 6                                   | -3                     | 0.13      |
| F941       | southern Scandinavia | female | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 4              | 8             | 12                                  | -1                     | 0.1       |
| M014       | southern Scandinavia | male   | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 2              | 6             | 8                                   | -4                     | 0.12      |
| M034       | southern Scandinavia | male   | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 3              | 12            | 15                                  | -4.5                   | 0.15      |
| M021.1     | southern Scandinavia | male   | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 2              | 1             | 3                                   | -5                     | 0.13      |
| M021.2     | southern Scandinavia | male   | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 0              | 0             | 0                                   | -5                     | 0.13      |
| 38         | Spain                | male   | BAS mk10, stalk, 1.1g        | 5                      | 2         | 22             | 27            | 49                                  | -2.5                   | 0.1       |
| 45         | Spain                | male   | BAS mk10, stalk, 1.1g        | 5                      | 2         | 9              | 18            | 27                                  | -3.5                   | 0.1       |
| 59         | Spain                | male   | BAS mk10, no stalk, 1.1g     | 2                      | 2         | 20             | 36            | 56                                  | -1.5                   | 0.11      |
| 47.1       | Spain                | male   | BAS mk10, stalk, 1.1g        | 5                      | 2         | 13             | 20            | 33                                  | -3                     | 0.11      |
| 47.2       | Spain                | male   | BAS mk10, stalk, 1.1g        | 5                      | 2         | ! 10           | 8             | 18                                  | -1.5                   | 0.1       |
| F139       | Spain                | female | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 9              | 10            | 19                                  | -4                     | 0.13      |
| F647       | Spain                | female | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 4              | 7             | 11                                  | -4                     | 0.13      |
| F649       | Spain                | male   | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 2              | 4             | 6                                   | -3.5                   | 0.15      |
| Mk5520_3   | Netherlands          | male   | BAS mk10s, stalk, 1.1g       | 2                      | 2         | 2 12           | 11            | 23                                  | -2                     | 0.1       |
| MK5520_5   | Netherlands          | female | BAS mk10s, stalk, 1.1g       | 2                      | 2         | 22             | 35            | 57                                  | 0                      | 0.1       |
| Mk10_21670 | Netherlands          | female | BAS mk10, no stalk, 1.0g     | 5                      | 2         | 16             | 6             | 22                                  | -3                     | 0.1       |
| F126       | Greece               | male   | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 12             | 4             | 16                                  | -4                     | 0.13      |
| F146       | Greece               | female | Intigeo P65, no stalk, 0.75q | 5                      | 0.3       | 9              | 13            | 22                                  | -1                     | 0.15      |
| F152       | Greece               | male   | Intigeo P65, no stalk, 0.75q | 5                      | 0.3       | 16             | 14            | 30                                  | -1                     | 0.12      |
| F953       | mid Scandinavia      | male   | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 11             | 14            | 25                                  | -2.5                   | 0.1       |
| F955       | mid Scandinavia      | male   | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 11             | 5             | 16                                  | -3                     | 0.13      |
| BA128      | Russia               | male   | Intigeo P65, no stalk, 0.75g | 5                      | 0.3       | 10             | 9             | 19                                  | -3                     | 0.13      |

50 Model specification of each of the four models applied. For definitions of event, site and segment, please see Table A3.

| Model no | Model specification                                                                   |
|----------|---------------------------------------------------------------------------------------|
| Model 1  | Migratory schedule ~ population + event + (population x event) + (11id) + (11year)    |
| Model 2  | Longitude $\sim$ population + site + (population x site) + (11id) + (11year)          |
| Model 3  | Latitude $\sim$ population + site + (population x site) + (11id) + (11year)           |
| Model 4  | log(travel speed) ~ population + segment + (population x segment) + (11id) + (11year) |
|          |                                                                                       |

#### 52 Table A3

51

53 Number of tracks and individuals (n) available at each event, site (longitude/latitude) and segment of migration for the

54 southern Scandinavian and Spanish population, respectively.

|                                  | No of tracks / (n)<br>sScand Spain |       |  |
|----------------------------------|------------------------------------|-------|--|
| Event                            |                                    |       |  |
| Breeding area departure          | 31 (24)                            | 8 (6) |  |
| Mediterranean arrival            | 31 (24)                            | 8 (6) |  |
| Mediterranean departure          | 29 (23)                            | 8 (6) |  |
| Sahel arrival                    | 29 (23)                            | 8 (6) |  |
| Sahel departure                  | 30 (24)                            | 8 (6) |  |
| Southern Africa arrival          | 30 (24)                            | 8 (6) |  |
| Southern Africa departure        | 30 (24)                            | 8 (6) |  |
| Eastern Africa arrival           | 28 (23)                            | 8 (6) |  |
| Eastern Africa departure         | 28 (23)                            | 8 (6) |  |
| Breeding site arrival            | 23 (21)                            | 7 (6) |  |
| Longitude                        |                                    |       |  |
| Mediterranean                    | 29 (22)                            | 8 (6) |  |
| Sahel                            | 28 (22)                            | 8 (6) |  |
| Southern Africa                  | 28 (22)                            | 8 (6) |  |
| Eastern Africa                   | 27 (22)                            | 8 (6) |  |
| Latitude                         |                                    |       |  |
| Mediterranean                    | 28 (22)                            | 8 (6) |  |
| Sahel                            | 27 (21)                            | 8 (6) |  |
| Southern Africa                  | 28 (22)                            | 8 (6) |  |
| Eastern Africa                   | 26 (21)                            | 8 (6) |  |
| Segment                          |                                    |       |  |
| Breeding area - Mediterranean    | 28 (22)                            | 8 (6) |  |
| Mediterranean - Sahel            | 26 (21)                            | 8 (6) |  |
| Sahel - southern Africa          | 27 (21)                            | 8 (6) |  |
| Southern Africa - eastern Africa | 26 (21)                            | 8 (6) |  |
| Eastern Africa - breeding area   | 20 (18)                            | 6 (5) |  |

56 Model-based estimates of expected migration schedules (days since 1 July) of the southern Scandinavian and Spanish

57 population and the event-wise differences between populations (timing of Spanish population subtracted from timing of

58 the southern Scandinavian population) with corresponding standard errors (SE)<sup>\*</sup>. P-values are for the tests comparing

59 the expected timing of the two populations at each event throughout the annual cycle.

| Event                     | sScand              | Spain               | sScand - Spain        | P <sub>adj</sub> |
|---------------------------|---------------------|---------------------|-----------------------|------------------|
|                           | Estimate (SE = 2.8) | Estimate (SE = 4.3) | Difference (SE = 4.3) |                  |
| Autumn migration          |                     |                     |                       |                  |
| Breeding area departure   | 38.5                | 38.1                | 0.4                   | 1                |
| Southern Europe arrival   | 47.2                | 50.1                | -2.9                  | 1                |
| Southern Europe departure | 63.9                | 63.5                | 0.4                   | 1                |
| Sahel arrival             | 72.5                | 72.1                | 0.4                   | 1                |
| Sahel departure           | 126.0               | 117.7               | 8.2                   | 0.6              |
| Southern Africa arrival   | 143.2               | 144.9               | -1.7                  | 1                |
| Spring migration          |                     |                     |                       |                  |
| Southern Africa departure | 267.0               | 272.5               | -5.4                  | 1                |
| Eastern Africa arrival    | 286.3               | 290.1               | -3.9                  | 1                |
| Eastern Africa departure  | 297.4               | 298.9               | -1.5                  | 1                |
| Breeding area arrival     | 327.3               | 329.7               | -2.4                  | 1                |

60 \*Estimated standard deviations of the random intercepts in the model were 6.81 for id and 5.25 for year, while residual standard

deviation was 5.91.

63 Model-based estimates of expected longitude and latitude of the southern Scandinavian and Spanish population at each

64 staging site throughout the annual cycle and site-wise differences between the populations (longitude/latitude of

65 Spanish population subtracted from longitude/latitude of the southern Scandinavian population) with corresponding

standard errors (SE)\*. P-values are for the tests comparing the expected timing of the two populations at each site

67 throughout the annual cycle.

| Site                 | sScand                   | Spain                       | sScand - Spain                 | <b>P</b> adj. |
|----------------------|--------------------------|-----------------------------|--------------------------------|---------------|
|                      | Estimate (SE = 0.6)      | Estimate (SE = 1.1)         | Difference (SE = 1.3)          |               |
| Longitude            |                          |                             |                                |               |
| Mediterranean        | 22.48                    | 21.43                       | 1.1                            | 0.6           |
| Sahel                | 26.84                    | 25.49                       | 1.4                            | 0.6           |
| Southern Africa      | 20.60                    | 32.39                       | -11.8                          | <0.001        |
| Eastern Africa       | 39.82                    | 41.67                       | -1.8                           | 0.4           |
|                      | Estimate (SE = 0.9)      | Estimate (SE = 1.7)         | Difference (SE = 2.0)          |               |
| Latitude             |                          |                             |                                |               |
| Mediterranean        | 44.19                    | 41.35                       | 2.8                            | 0.3           |
| Sahel                | 9.42                     | 7.69                        | 1.7                            | 0.4           |
| Southern Africa      | -21.53                   | -15.44                      | -6.1                           | 0.01          |
| Eastern Africa       | -1.51                    | 2.44                        | -3.9                           | 0.1           |
| * Estimated standard | deviations of the random | intercepts in the model for | r longitude were 7.02 for id a | and 3.40 fc   |

69 standard deviation was 3.01. In the model for latitude they were 6.62 for id and 0.33 for year, while residual standard deviation was

**70** 4.82.

68

Model-based estimates of expected travel log-speed (natural logarithm; km d<sup>-1</sup>) of the southern Scandinavian and Spanish population and segment-wise differences between populations (log-speed of Spanish population subtracted from log-speed of the southern Scandinavian population) with corresponding standard error (SE)<sup>\*</sup>. P-values are for tests comparing the expected speed at each migratory segment throughout the annual cycle.

1

| Segment                          | sScand              | Spain               | sScand - Spain        | P <sub>adj.</sub> |
|----------------------------------|---------------------|---------------------|-----------------------|-------------------|
|                                  | Estimate (SE = 0.1) | Estimate (SE = 0.2) | Difference (SE = 0.2) |                   |
| Autumn migration                 |                     |                     |                       |                   |
| Breeding area – Mediterranean    | 5.3                 | 5.3                 | 0                     | 1                 |
| Mediterranean - Sahel            | 6.2                 | 6.1                 | 0.1                   | 1                 |
| Sahel – southern Africa          | 5.4                 | 4.7                 | 0.7                   | < 0.001           |
| Spring migration                 |                     |                     |                       |                   |
| Southern Africa – eastern Africa | 5.1                 | 5.0                 | 0.1                   | 1                 |
| eastern Africa - Breeding area   | 5.5                 | 5.5                 | -0.1                  | 1                 |

\*Estimated standard deviation of the random intercept for year was 0.08, while residual standard deviation was 0.43. As the standard deviation of the random intercept of individual was estimated to 0, the model was refitted without this random intercept.



#### Figure A1

Seasonal development of NDVI at the local breeding sites averaged over a 15-year period (2001-2015). Annual variation is shown as 95 percent confidence intervals at each time stamp. Colours depict different breeding populations (dark blue: Denmark, orange: Spain, khaki: The Netherlands, red: Greece, green: mid Scandinavia and light blue: Russia).



## Figure A2

Mean longitude of the main non-breeding area in southern Africa in response to breeding area latitude. Colours depict different breeding populations (dark blue: southern Scandinavia, orange: Spain, khaki: The Netherlands, red: Greece, green: mid Scandinavia and light blue: Russia).



## Figure A3

Distance (A) and duration (B) of main travel segments throughout the annual cycle. Colours depict different breeding populations (dark blue: southern Scandinavia, orange: Spain, khaki: The Netherlands, red: Greece, green: mid Scandinavia and light blue: Russia). Boxes indicate median values with 25 and 75 percentiles. Whiskers represent 5 and 95 percentiles while dots indicate extreme values.