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Table S1. Sex ratio variation among years analyzing complete broods only 

		 cbind(male,female)	 	

Predictors	 Odds	Ratios	 95%	CI	 P	 Group*	

(Intercept)	 0.79	 0.36	–	1.73	 0.549	 A	

year	2013	 1.27	 0.45	–	3.59	 0.649	 A	

year	2015	 1.65	 0.60	–	4.53	 0.334	 A	

year	2016	 1.27	 0.45	–	3.59	 0.649	 A	

Observations	 49	 	

R2	Tjur	 0.003	 	

 

*Group designation based on post-hoc pairwise comparisons of years using Tukey post hoc tests. 

The same letter assignment for all years indicates that no pairwise differences were significant.  

 
 
 
 
  



Table S2. Sex ratio variation among years assuming all missing nestlings were female. 

 

 

 

 

 

 

 

 

 

 

 

 

		 cbind(male,(female+missing))	 	

Predictors	 Odds	Ratios	 95%	CI	 P	 Group	

(Intercept)	 0.45	 0.29	–	0.71	 0.001	 A	

year	2013	 1.72	 0.93	–	3.16	 0.082	 A	

year	2015	 1.33	 0.73	–	2.44	 0.350	 A	

year	2016	 1.50	 0.79	–	2.85	 0.218	 A	

Observations	 116	 	

R2	Tjur	 0.000	 	



Table S2. Sex ratio variation among years assuming all missing nestlings were male.  

		 cbind((male+missing),female)	 	

Predictors	 Odds	Ratios	 95%	CI	 P	 Group	

(Intercept)	 1.64	 1.06	–	2.52	 0.026	 A	

year	2013	 1.18	 0.64	–	2.17	 0.586	 A	

year	2015	 0.90	 0.50	–	1.62	 0.730	 A	

year	2016	 0.81	 0.44	–	1.52	 0.521	 A	

Observations	 116	 	

R2	Tjur	 0.020	 	
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Missing data
We found no evidence of sex ratio bias in response to environmental conditions (rainfall). However, we did not sex
all of the nestlings in the study. Most missing values (19% of total nestlings) are from nestlings that died before
blood could be taken, or we were unable to sample blood from that nestling. A small number (4% of total
nestlings) did not amplify. Is it possible that sex biases in the missing data could have affected our results?

library(dplyr) 
library(lme4) 
library(lmerTest) 
set.seed(1234) 
sexnest <- read.csv("./CSVS/sexpernest.csv") 
sexnest$hatch.date <- as.Date(sexnest$hatch.date, format= "%m/%d/%y") 
sexnest$year <- as.factor(sexnest$year) 
sexnest <- sexnest[sexnest$round==1,] #Only include first nesting attempts 
 
sex <- read.csv("./CSVs/nestling-sex2020.csv") #each row is a nestling 
 
 
head(sexnest) #The "missing" column gives the number of missing nestlings from that nest

##   yearnest year nest treatment round repeat. male female nestlings 
## 1  2012-11 2012   11         P     1       1    0      1         3 
## 2  2012-19 2012   19         P     1       1    0      1         4 
## 3   2012-2 2012    2         W     1       1    0      1         3 
## 4  2012-20 2012   20         W     1       1    1      1         4 
## 5  2012-24 2012   24         W     1       1    2      0         3 
## 6  2012-25 2012   25         P     1       1    1      0         3 
##   hatch.date cumulative.rain propfemale complete missing 
## 1 2012-03-02           190.5        1.0        0       2 
## 2 2012-03-15           190.5        1.0        0       3 
## 3 2012-03-24           191.7        1.0        0       2 
## 4 2012-03-08           190.5        0.5        0       2 
## 5 2012-03-01           190.5        0.0        0       1 
## 6 2012-03-08           190.5        0.0        0       2

1. Simulations
To answer this question we simulated missing data under different senarios, added those data to our observed
data, and asked “Do we still get the same (negative) result?”

How much missing data overall?



sum(sexnest$missing)/sum(sexnest$nestlings) #23% 

## [1] 0.2320442

The basic simulation
First, to demonstrate the idea, we will simulate data with a certain probability of being female using the binomial
distribution. A probability of 0.5 would give equal ratios of males and females; P = 1 would mean all missing
nestlings were female; P = 0 would mean all missing nestlings were male.

To simulate these data, we will:
1) Pick a uniform range of Ps between 0 and 1 to create various scenarios
2) Calculate the number of males and females that would have been present in the missing data under each
scenario
3) Add those “found” nestlings to our observed data
4) Use a glm to test whether with this bigger dataset there is a significant relationship between rainfall at each
nest and the sex ratio of its nestlings.

#Subset data 
testdat1 <- select(sexnest, year, male, female, nestlings, missing, cumulative.rain) 
#Create a dataframe to save our results 
saveframe <- data.frame(iteration = 1:1000, prob.female = NA,  
                        pval.rain = NA, prop.missing.female = NA) 
 
#The simulation
for (i in 1:1000) { 
  testdat <- testdat1 
  prob.female <- runif(1, 0, 1) #Pick a number between 0 and 1, the p(female) for this i
teration 
  n.female <- round(rbinom(nrow(testdat), testdat$missing, prob.female)) #number of miss
ing nestlings that are female 
  n.male <- testdat$missing - n.female #number missing nestlings that are male 
  testdat$total.f <- testdat$female + n.female #total number of female nestlings  
  testdat$total.m <-testdat$male + n.male #total number of male nestlings  
  saveframe$prob.female[i] <- prob.female #save iteration female probability 
  saveframe$prop.missing.female[i] <- sum(n.female)/sum(testdat$missing) #proportion of
 missing nestlings that were assigned female 
  #run a glm testing for differences in ratio female:male depending on rain and save p v
alue. 
  saveframe$pval.rain[i] <- summary(glm(cbind(total.f,total.m) ~ cumulative.rain, 
                                        data=testdat, "binomial"))$coefficients[2,4] 
 
}

We can plot the data to see if there’s a relationship between the probability that missing nestlings are female and
the p value of glm(sex ratio ~ rainfall). The red line below is p = 0.05. Points above the line indicate simulations
where adding missing data gives us the same result as our observed data alone (no significant effect of rainfall on
sex ratio). Any points below that line indicate a simulation where adding missing data leads to a result that there is
a significant effect of rainfall on sex ratio.



Out of 1000 simulations, how often was there a significant p value for the effect of rain on sex ratio?

filter(saveframe, pval.rain < 0.05) %>% nrow() #4 

## [1] 4

Out of 1000 simulations, only 4 resulted in rain having a significant effect on nestling sex ratio. This result
suggests that even if nestling mortality is heavily sex biased, it is unlikely to have affected our results about the
relationship between rainfall and sex ratio. These results are consistent with the simpler analysis in the main text
showing that even assuming all missing nestlings were all male or all female we do not find a significant
relationship between rainfall and brood sex ratio.

This is not surprising, of course, because if the missing data are sex biased, but bias is unrelated to our factors of
interest (i.e. rainfall) then overall there still will be no difference in sex ratios of nests in different environmental
conditions.

The more complicated scenario is when sex ratios of the missing nestlings depends on rainfall.

Simulation: sex of missing nestlings depend on
rainfall
Now, we will simulate data to test whether sex bias in missing nestlings related to rainfall levels created a Type II
error.



Simulating reasonable effect sizes
We have not found any other studies that report effect sizes of rainfall on nestling sex ratios. However, other
studies of sex ratios with similar sample sizes report odds ratios between 0.5 and 7.0 between various treatment
groups. We will create “effect sizes” that create similar odds ratios between the extremes of our rainfall values. In
those papers, the most extreme sex ratio for a group was 0.3, so we will use that as a starting point for the driest
nests. Then, based on a randomly chosen odds ratio, we calculate the odds that a missing nestling in the wettest
nest was male, and create probabilities that missing nestlings were male along a linear gradient from least to most
wet.

For instance, at a fairly extreme odds ratio of 5.0, in the driest nests, the probability that a missing nestling is male
will be 0.3, and the probability that a missing nestling is male in the wettest nests can be calculated as follows:

low_p <- 0.3 #prob of male in driest nests 
low_odds <- low_p/(1-low_p) 
odds_ratio <- 5 #An example odds ratio between driest and wettest conditions 
high_odds <- low_odds * odds_ratio #odds at the wet extreme 
high_p <- high_odds/(1+high_odds) #probability at the wet extreme; 0.68

We then can use algebra to create a linear gradient of probabilities based on rainfall

unit_increase <- (high_p - low_p) / (max(testdat1$cumulative.rain) - min(testdat1$cumula
tive.rain)) #calculate the slope of the relationship 
intercept <- low_p - (unit_increase * min(testdat1$cumulative.rain)) #calculate intercep
t 
unit_increase*max(testdat1$cumulative.rain) + intercept == high_p #test that the equatio
n of the line recovers our high p at the max rainfall

## [1] TRUE

testdat1$p <- unit_increase*testdat1$cumulative.rain + intercept 
plot(testdat1$p, testdat1$cumulative.rain)



Now the simulation will choose 1000 odds ratios between 0.5 and 7, simulate sexes of the missing nestlings, and
test whether rainfall has a significant relationship with sex ratio.



results2 <- data.frame(odds_ratio = NA, pval = rep(NA, 1000)) #create a spot to save res
ults 
 
for (i in 1:1000){ 
testdat1 <- select(sexnest, year, treatment, male, female, nestlings, missing, cumulativ
e.rain) 
low_p <- 0.3 #prob of male in driest nests 
low_odds <- low_p/(1-low_p) 
odds_ratio <- runif(n = 1, min = 0.5, max = 7) #pick a random odds ratio within our rang
e 
high_odds <- low_odds * odds_ratio #odds at the wet extreme 
high_p <- high_odds/(1+high_odds) #probability at the wet extreme 
 
unit_increase <- (high_p - low_p) / (max(testdat1$cumulative.rain) - min(testdat1$cumula
tive.rain)) #calculate the slope of the relationship 
intercept <- low_p - (unit_increase * min(testdat1$cumulative.rain)) #calculate intercep
t 
unit_increase*max(testdat1$cumulative.rain) + intercept == high_p #test that the equatio
n of the line recovers our high p at the max rainfall 
 
testdat1$p <- unit_increase*testdat1$cumulative.rain + intercept 
 
# now fill in sex of missing nestlings for each nest where the probability that they
# are male = p 
 
n.male <- round(rbinom(nrow(testdat1), testdat1$missing, testdat1$p)) #calculate number
 of missing male nestlings 
n.female <- testdat1$missing - n.male 
testdat1$total.m <- testdat1$male + n.male 
testdat1$total.f <- testdat1$female + n.female 
results2$pval[i] <- summary(glm(cbind(total.m,total.f) ~ cumulative.rain, data = testdat
1, "binomial"))$coefficients[2,4] 
results2$odds_ratio[i] <- odds_ratio 
}

A plot of the results:



filter(results2, pval < 0.05) %>% nrow() #How many simulations resulted in significant p 
values?

## [1] 173

filter(results2, odds_ratio > 5, pval < 0.05) %>% nrow() /filter(results2, odds_ratio > 
5) %>% nrow() #Proportion of significant simulations when OR > 5:

## [1] 0.3961039

About 20% of our total simulations resulted in significant values. Nearly all these cases were when there were
extreme sex biased mortality dependent on rainfall (OR > 5). However, even in these extreme examples, most of
the time there was not a significant effect of rainfall on overall brood sex ratio. This result matches the result we
get without including missing data.

Do we have any evidence that there was baised mortality of male or female nestlings in different rainfall
conditions?

summary(glm(fledged ~ sex * cumulative.rain, data = sex, family= "binomial"))



##  
## Call: 
## glm(formula = fledged ~ sex * cumulative.rain, family = "binomial",  
##     data = sex) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -2.1519  -1.0746   0.4654   0.9927   1.3341   
##  
## Coefficients: 
##                       Estimate Std. Error z value Pr(>|z|)     
## (Intercept)          -1.760599   0.498490  -3.532 0.000413 *** 
## sexM                  0.338401   0.707680   0.478 0.632519     
## cumulative.rain       0.020796   0.004705   4.420 9.87e-06 *** 
## sexM:cumulative.rain -0.001948   0.006605  -0.295 0.768064     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 366.53  on 277  degrees of freedom 
## Residual deviance: 319.50  on 274  degrees of freedom 
##   (68 observations deleted due to missingness) 
## AIC: 327.5 
##  
## Number of Fisher Scoring iterations: 4

Of the nestlings that we did sex, they were more likely to fledge in wetter conditions. However, there was no
significant interaction between rainfall and sex; i.e. rainfall levels were not associated with mortality of one sex
more than the other.

Conclusions
In conclusion, assuming extreme sex-based differences in mortality dependent on rainfall, our negative result of
the effects of rainfall on sex ratio could have been a Type II error. However, this scenario depends on 1) Extremely
strong sex-dependent effects of rainfall on early nestling mortality that subsequently disappear. 2) Chance,
because even with that sex-biased mortality most simulations still do not find an effect of rainfall on overall brood
sex ratio.

Thus we believe that these missing data are unlikely to have affected our conclusions.

Power analysis
A separate issue is whether we have the power to detect a significant relationship even if it exists. To do a power
analysis we will use the same framework. We will create a range of odds ratios that represents possible effect
sizes of rain on sex ratios. This time, instead of just simulating missing nestlings we will simulate all nestlings, and
then run the GLM to test how often we get a significant result when a true difference does exist given our sample
size.



results3 <- data.frame(odds_ratio = c(runif(n = 1000, min = 0.5, max = 7)),  
                       pval = rep(NA, 1000)) #create a spot to save results 
 
for (i in 1:1000){ 
testdat1 <- select(sexnest, year, treatment, male, female, nestlings, missing, cumulativ
e.rain) 
low_p <- 0.3 #prob of male in driest nests 
low_odds <- low_p/(1-low_p) 
odds_ratio <- results3$odds_ratio[i] 
high_odds <- low_odds * odds_ratio #odds at the wet extreme 
high_p <- high_odds/(1+high_odds) #probability at the wet extreme 
 
unit_increase <- (high_p - low_p) / (max(testdat1$cumulative.rain) - min(testdat1$cumula
tive.rain)) #calculate the slope of the relationship 
intercept <- low_p - (unit_increase * min(testdat1$cumulative.rain)) #calculate intercep
t 
unit_increase*max(testdat1$cumulative.rain) + intercept == high_p #test that the equatio
n of the line recovers our high p at the max rainfall 
 
testdat1$p <- unit_increase*testdat1$cumulative.rain + intercept 
 
# now fill in sex of missing nestlings for each nest where the probability that they
# are male = p 
 
n.male <- rbinom(nrow(testdat1), testdat1$nestlings, testdat1$p) #simulate number of mal
e nestlings, keeping brood size the same 
n.female <- testdat1$missing - n.male 
testdat1$total.m <- rbinom(nrow(testdat1), testdat1$nestlings, testdat1$p) 
testdat1$total.f <- testdat1$nestlings - testdat1$total.m 
results3$pval[i] <- summary(glm(cbind(total.m,total.f) ~ cumulative.rain, data = testdat
1, "binomial"))$coefficients[2,4] 
results3$odds_ratio[i] <- odds_ratio 
 
}

Plot the results

plot(pval ~ odds_ratio, results3, xlab = "Effect size (odds ratio between driest and wet
test conditions)",  
     ylab = "P value")



 As

the effect size gets bigger, the smaller the p values get.

Achieved power:
results3$bin <- cut(results3$odds_ratio, breaks = 0:7, labels = 1:7) 
 
sims <- table(results3$bin) # number of simulations in each category 
sig <- filter(results3, pval < 0.05)  
pow <- table(sig$bin) / sims 
plot (1:7, as.vector(pow), xlab = "Effect size (odds ratio)", ylab = "Power")



These simulations demonstrate that our power to detect small effects was low. However, for larger effects that are
still well within the range of published brood sex ratio differences we actually had very good power to detect a
difference. Thus, we conclude that while we may have missed small effects of rainfall on mockingbird sex ratio, it
is unlikely that rainfall has substantial effects on mockingbird sex ratio. These data may be useful for others
planning sex ratio studies of birds and seeking to estimate needed sample sizes.


