Journal of Avian Biology

JAV-02237

McCaslin, H. M. and Heath, J. A. 2019. Patterns and mechanisms of heterogeneous breeding distribution shifts of North American migratory birds. – J. Avian Biol. 2019: e02237

Supplementary material

Appendix 1.

Additional information about assigning species characteristics from Birds of North America Online accounts

We characterized species' migration type (complete or partial), migration distance, overlap of breeding and wintering range, average wintering latitude, diet (herbivore, insectivore, carnivore), circadian migration patterns, conspecific group size during migration, habitat specialization, territoriality, and presence of protandry using species accounts on Birds of North America Online (BNA, Rodewald 2015). For the species included, year of last account updates ranged from 1995 to 2018. We recognize that this is an imperfect system for characterizing species, but BNA account records are largely based off of peer-reviewed publications, rather than the personal observations of a single or a few authors, so we felt that this was the best option to gather data for many species. We assigned traits missing from a species' Birds of North America record as 'no data' for that species.

In general, we used the first paragraph under each relevant heading (Diet and foraging; distribution, migration, and habitat; etc) when possible, and continued into more specific subheadings until we found the information of interest. For several variables, we characterized first into more specific groupings with more levels and combined groupings into less specific groupings with fewer levels if there was a low number of species in a level, and where applicable, constructed and compared models using the different grouping schemes to ensure grouping method did not affect results.

Migration type, distance, and range characteristics

We used the "Distribution, Migration, and Habitat" heading and the species distribution map to characterize migration and distribution variables. Migration type and distance variables were characterized using the "Nature of Migration" subheading. We defined 'partially migratory' species as those species in which some but not all individuals or populations migrate, and considered a species partially migratory if any populations in some portion of its range were reported as being partially migratory or if some populations were migratory and others were resident. We classified migration distance according to what the BNA entry authors considered the migration distance, and also visually inspected the species distribution map to ensure that these classifications were relevant across our included species. We combined 'short' and 'mid' from migration Dist1 into 'short' for migration Dist2 and 'long' and 'trans-equatorial' into 'long' for migration Dist2.

We characterized wintering location as primarily in the United States, Central America, or South America using the "Winter Range" subheading and the species distribution map to characterize wintering location. For species whose wintering ranges spanned multiple categories, we originally allowed wintering latitude characteristics to encompass entire wintering range and include multiple levels (Wint1), but this approach led to many levels and very uneven group sizes between levels, so we recharacterized this variable to only include the category that describes location of the majority of the wintering range, or for very large ranges, the average latitude of the wintering range (Wint2). We used only Wint2 in analysis.

We identified species with overlapping breeding and wintering ranges using the species distribution maps, characterizing species with 'year-round' areas between breeding and

wintering as having overlapping distributions (we did not attempt to specify if these year-round areas were due to leap-frog migrants or year-round residents).

We classified spring migration time of day and group size using the "Migratory Behavior" subheading, which made explicit mention of these traits in most cases. We allowed species to be classified as diurnal, nocturnal, or both, and designated a single group size for each species based off of the most common migratory group observed when multiple modes have been observed.

We identified the presence of protandry using the "Nature of Migration" subheading. We classified species as displaying protandry (differential arrival timing on the breeding grounds) if the BNA entry noted males arriving earlier on the breeding grounds either by migrating earlier or faster than females (there were no instances of females arriving first), or males wintering farther north than females. We did not consider differential migration between juveniles and adults. We did not distinguish between 'no data/unknown' and no protandry because no entries stated a demonstrated absence of differential migration.

Diet

We used the "Diet and Foraging" heading for each species to characterize primary diet. We used the "Major Food Items" subheading and selected the first food source listed or the food source identified as the primary food source in the entry as primary diet type. We originally distinguished between granivores and nectarivores/frugivores but combine these into "herbivores" because of low sample size. Habitat specialization & territoriality variables

We used the "Habitat in breeding range" heading to classify habitat specialization in species, and characterized species as habitat specialists if the entry explicitly stated the species was a specialist, or if the entry described a narrow habitat type (e.g. specific tree species, single successional stages, etc). We used the "Spacing" subheading under the "Behavior" heading to classify territoriality in species, and characterized species as territorial if the entry states that males defend a territory during the breeding season, regardless of territory size.

Table A1. Life history characteristics and corresponding variable levels used to hypotheses

 about the relationship between life history and distribution shifts. Species were assigned to levels

 of variables using Birds of North America entries.

Variable	Levels
Migration type	Complete; partial
Migration distance 1 (Dist1)	Short; mid; long; Trans-equatorial/long
Migration distance 2 (Dist2)	Short; long
Wintering location 1 (Wint1)	United States (U.S); Central America (C.A.); South America (S.A.); U.S./C.A.; C./S.A.; all
Wintering location II (Wint2)	U.S.; C.A.; S.A.
Overlapping breeding & wintering ranges	Yes; no
Migration time of day	Day; night; both
Migratory group size	Individual group; conspecific group; mixed flock
Presence of differential migration across sexes	Yes (timing or distance); no
Primary diet	Insectivore; herbivore; carnivore
Habitat specialist	Yes; no
Territorial	Yes; no

Table A2. Species and life history traits used to examine shifts in breeding distribution centroid from 1994-2017. "Region" is the region(s) in which each species was analyzed, and "Family" is taxonomic family for each species. Life history traits were classified using Birds of North America (Rodewald 2015) and details of classification and the levels of each trait are described above.

Common Name	Scientific Name	Region	Family	Primary Diet	Migration Strategy	Migratory Distance1	Migratory Distance2	Migration Time of Day	Migrant Group Size	Migration by Sex	Habitat Specialis	t Territorial	Wintering Latitude1	Wintering Latitude2	
Osprey	Pandion haliaetus	East, West	Pandionidae	Vertebrate	Complete	Long	Long	Day and Night	Individual	No	No	No	CA	Central America	
Red-tailed Hawk	Buteo jamaicensis	East, Central, West	Accipitridae	Vertebrate	Partial	Short	Short	Day	no data	No	No	Territorial	US and CA	United States	
Golden Eagle	Aquila chrysaetos	Central, West	Accipitridae	Vertebrate	Partial	Short	Short	Day	Individual	No	No	Territorial	US	United States	
Northern Harrier	Circus hudsonius	East, Central, West	Accipitridae	Vertebrate	Partial	Long	Long	Day	no data	No	No	No	US and CA	United States	
Swainson's Hawk	Buteo swainsoni	Central, West	Accipitridae	Vertebrate	Complete	Very long	Long	Day	Conspecific group	No	No	Territorial	SA	South America	
Sharn-shinned Hawk	Acciniter striatus	East Central West	Accinitridae	Vertebrate	Partial	Mid	Short	Dav	Individual	No	No	Territorial	US and CA	United States	
Killdeer	Charadrius vocifarus	East, Central West	Charadriidae	Invertebrate	Partial	Mid	Short	Day and Night	Conspecific group	No	No	Territorial	US and CA	United States	
	Chur uur ius vocijer us	Cast Central, west		Invertebrate	r ai uai	M	Short	Day and Night	Conspecific group	NU	NO	Territoriai	CA CA	C i l h	
Long-billed Curlew	Numenius americanus	Central, west	Scolopacidae	Invertebrate	Complete	Mid	Snort	no data	Conspecific group	No	res	Territoriai	CA	Central America	
Chimney Swift	Chaetura pelagica	East, Central	Apodidae	Invertebrate	Complete	Very long	Long	Day	Conspecific group	No	No	No	SA	South America	
Vaux's Swift	Chaetura vauxi	West	Apodidae	Invertebrate	Complete	Very long	Long	Day	Conspecific group	No	Yes	No	CA and SA	South America	
Ruby-throated Hummingbird	Archilochus colubris	East, Central	Trochilidae	Plant	Complete	Long	Long	no data	no data	Yes	No	Territorial	CA	Central America	
Northern Flicker (Yellow-shafted)	Colaptes auratus auratus	East, Central	Picidae	Invertebrate	Partial	Mid	Short	Day and Night	Conspecific group	Yes	No	Territorial	US	United States	
Northern Flicker (Red-shafted)	Colaptes auratus cafer	Central, West	Picidae	Invertebrate	Partial	Mid	Short	Day and Night	no data	No	No	Territorial	US	United States	
Northern Flicker (unid subspn)	Colantes auratus	Central	Picidae	Invertebrate	Partial	Mid	Short	Day and Night	no data	No	No	Territorial	US	United States	
Amarican Kastral	Ealoo anamarius	East Control West	Falconidao	Invertebrate	Portial	Short	Short	Day	Individual	No	No	Torritorial	US and CA	United States	
American Kestrei	Faico sparverius	East, Central, west	Faiconidae	Invertebrate	Partiai	Short	Short	Day	Individual	INO	NO	Territorial	US and CA	United States	
Prairie Falcon	Falco mexicanus	Central, West	Falconidae	Vertebrate	no data	no data	no data	Day	no data	No	Yes	Territorial	US	United States	
Acadian Flycatcher	Empidonax virescens	East	Tyrannidae	Invertebrate	Complete	Mid	Short	no data	no data	Yes	No	Territorial	CA	Central America	
east Flycatcher	Empidonax minimus	East, Central	Tyrannidae	Invertebrate	Complete	Mid	Short	no data	no data	Yes	No	Territorial	CA	Central America	
Dusky Flycatcher	Empidonax oberholseri	West	Tyrannidae	Invertebrate	Complete	Short	Short	Night	no data	Yes	No	Territorial	CA	Central America	
Grav Elycatcher	Empidonax wrightii	West	Tyrannidae	Invertebrate	Complete	Short	Short	Night	no data	Yes	Yes	Territorial	CA	Central America	
Western Wood-Pewee	Contonus sordidulus	Central West	Tyrannidae	Invertebrate	Complete	Very long	Long	no data	no data	No	No	Territorial	SA	South America	
Paris Dhasha	Comopus sor auauas	Control W	Tumma	Invertebrate	complete	very long	Long Ch.	David	Ino uata	Van	NU.	a de la	11	United St. 1	
says r'noebe	Suyornis saya	Central, West	ryrannidae	invertebrate	no data	Snort	Snort	Day	maividual	r es	INO	no data	All	United States	
astern Phoebe	Sayornis phoebe	East, Central	Tyrannidae	Invertebrate	Partial	Long	Long	Day	no data	No	No	Territorial	US and CA	United States	
Eastern Kingbird	Tyrannus tyrannus	East, Central, West	Tyrannidae	Invertebrate	Complete	Very long	Long	Day	Conspecific group	Yes	No	Territorial	SA	South America	
oggerhead Shrike	Lanius ludovicianus	East, Central, West	Laniidae	Invertebrate	Partial	Short	Short	Day	no data	No	No	Territorial	US and CA	United States	
Red-eved Vireo	Vireo olivaceus	East. Central. West	Vireonidae	Invertebrate	Complete	Very long	Long	Night	no data	No	No	Territorial	SA	South America	
White-eved Vireo	Vireo griseus	East	Vireonidae	Invertebrate	Partial	Mid	Short	Night	no data	No	No	Territorial	US and CA	United States	
Vince-cycu Vinco	Vince Amilian	East Cantral	Vinconidae	Invertebrate	Camalata	Lana	Lana	Nisha	no data	N.	Var	Na	CA and CA	United States	
renow-unoaled viteo	vireo jiavijrons	East, Central	vireonidae	Invertebrate	Complete	Long	Long	Night	no data	NO	res	INO DE LA LA	CA and SA	United States	
Warbling Vireo	Vireo gilvus	East, Central, West	Vireonidae	Invertebrate	Partial	Mid	Short	Night	Mixed flock	No	No	Territorial	CA	Central America	
Bell's Vireo	Vireo bellii	East, Central	Vireonidae	Invertebrate	Complete	Short	Short	Night	no data	No	No	Territorial	CA	Central America	
Purple Martin	Progne subis	East, Central, West	Hirundinidae	Invertebrate	Complete	Very long	Long	Day	Conspecific group	No	No	Territorial	SA	South America	
Barn Swallow	Hirundo rustica	East, Central, West	Hirundinidae	Invertebrate	Complete	Verv long	Long	Dav	Mixed flock	No	No	Territorial	CA and SA	United States	
Free Swallow	Tachycineta bicolor	East, Central, West	Hirundinidae	Invertebrate	Complete	no data	no data	Dav	Conspecific group	No	No	Territorial	CA	Central America	
ad branstad Nuthatah	Sitta aanadansis	East Wast	Sittidaa	Invertebrate	Portial	no data	no data	Day and Night	Mixed flock	No	No	Torritorial	US	United States	
Zadaa Waaa	Sina canadensis	East, west	Tanaladatidaa	Invertebrate	Partial	filo data Chant	filo uata Chant	Day and Night	Companyie and	No.	No.	Territorial	115	United States	
seuge wien	Cisioinorus piaiensis	East, Central	Troglodylidae	Invertebrate	Partial	Short	Short	Nigitt	Conspective group	NO	res	Territoriai	03	United States	
Marsh Wren	Cistothorus palustris	East, Central, West	Troglodytidae	Invertebrate	Partial	no data	no data	Night	no data	No	No	Territorial	CA	Central America	
House Wren	Troglodytes aedon	East, Central, West	Troglodytidae	Invertebrate	Partial	Mid	Short	Night	no data	No	No	Territorial	CA	Central America	
Blue-gray Gnatcatcher	Polioptila caerulea	East, Central, West	Polioptilidae	Invertebrate	Partial	no data	no data	no data	no data	No	No	Territorial	CA	Central America	
Ruby-crowned Kinglet	Regulus calendula	East, West	Regulidae	Invertebrate	Partial	Short	Short	no data	no data	Yes	No	Territorial	US and CA	United States	
Western Bluebird	Sialia mexicana	West	Turdidae	Invertebrate	Partial	Mid	Short	Day	Mixed flock	No	Yes	Territorial	US	United States	
Mountain Bluebird	Sialia currucoides	Central West	Turdidae	Invertebrate	Complete	Short	Short	no data	Mixed flock	Yes	No	Territorial	US	United States	
Factorn Plushird	Siglig siglis	Fact Control	Turdidaa	Invartabrata	Dortial	Short	Short	Day	Concensific group	No	No	Torritorial	US	United States	
		East, Central	Turdidae	Invertebrate	Paruai	Short	Short	Day	Conspecific group	NO	NO	Territorial	03	Onled States	
wood Inrush	Hylocicnia mustelina	East	Turdidae	Invertebrate	Complete	Mid	Short	Night	no data	No	NO	Territorial	CA	Central America	
American Robin	Turdus migratorius	East, Central, West	Turdidae	Invertebrate	Partial	Short	Short	Day	Conspecific group	No	No	Territorial	US	United States	
Sage Thrasher	Oreoscoptes montanus	West	Mimidae	Invertebrate	Complete	Short	Short	no data	no data	Yes	Yes	Territorial	US	United States	
Cedar Waxwing	Bombycilla cedrorum	East, Central, West	Bombycillidae	Invertebrate	no data	no data	no data	Day and Night	no data	No	No	No	US and CA	United States	
Chestnut-collared Longspur	Calcarius ornatus	Central	Calcariidae	Invertebrate	Complete	Mid	Short	no data	Individual	Yes	Yes	Territorial	US	United States	
Pine Warbler	Setophaga pinus	East	Parulidae	Invertebrate	Partial	Short	Short	Night	Mixed flock	No	Yes	Territorial	US	United States	
Vallow Warbler	Satonhaga patashia	East Control W+	Darulidaa	Invertebrate	Complet-	Long	Long	Night	Consposific grown	Var	No	Torritoric ¹	CA and SA	United States	
CHOW WAIDER	Carthhmia ta 1	East, Central, West	r arunuae Domili d	Invertebrate	Domini 1	Long	Long	Night	conspecific group	1 es	INO N.,	Territorial	US and SA	United States	
Johnnon Yenowthroat	Geointypis tricnas	East, Central, West	rarundae	invertebrate	Partiai	no data	no data	inight	no data	1 es	INO	rerritorial	US and CA	United States	
Kentucky Warbler	Geothlypis formosa	East	Parulidae	Invertebrate	Complete	Mid	Short	Night	Individual	No	No	no data	CA	Central America	
Yellow-throated Warbler	Setophaga dominica	East	Parulidae	Invertebrate	Partial	Mid	Short	Night	no data	No	No	Territorial	CA	Central America	
Black-and-white Warbler	Mniotilta varia	East	Parulidae	Invertebrate	Complete	Long	Long	Night	Mixed flock	Yes	No	Territorial	CA	Central America	
Chestnut-sided Warbler	Setophaga pensylvanica	East	Parulidae	Invertebrate	Complete	Mid	Short	Night	no data	No	Yes	Territorial	CA	Central America	
Worm-eating Warbler	Helmitheros vermisser	Fast	Parulidae	Invertebrate	Complete	Mid	Short	Night	no data	No	Yes	Territorial	CA	Central America	
Jooded Warbler	Satonhaga aitein -	East	Domlid	Invertebrate	Complete	Mid	Short	Night	no data	No	Ng	Torritorial	CA	Control America	
Tooded warbler	Selopnaga citrina	Last	rarunuae	invenebrate	Complete	iviiu	SHOR	nigin	no uata	1NU	INO	remtorial	CA LO	Central America	
Prairie Warbler	Setophaga discolor	East	Parulidae	Invertebrate	Partial	Mid	Short	Day and Night	Conspecific group	Y es	No	Territorial	US and CA	Central America	
American Redstart	Setophaga ruticilla	East, Central	Parulidae	Invertebrate	Complete	Mid	Short	Night	Mixed flock	No	No	Territorial	CA	Central America	
Black-throated Blue Warbler	Setophaga caerulescens	East	Parulidae	Invertebrate	Complete	Mid	Short	no data	no data	Yes	No	Territorial	CA	Central America	
Canada Warbler	Cardellina canadensis	East	Parulidae	Invertebrate	Complete	Long	Long	Night	Mixed flock	Yes	No	Territorial	CA	South America	
Nashville Warbler	Oreothbris ruficanilla	Fast West	Parulidae	Invertebrate	Complete	Mid	Short	Night	Mixed flock	Yes	Ne	Territorial	CA	Central America	
Plack throated Green Warkland	Satophaga wi	Want	Domlid	Invertebrate	Complete	Short	Short	Night	Mixed flool	No	Na	no det-	CA	Control America	
siack-uiroateu Gray warbier	Selopnaga nigrescens	west	rarunuae	invenebrate	Complete	Short	SHOR	mgn	IVITXEU HOCK	1NU	INO	no uata	CA	Central America	
r ellow-breasted Chat	Icteria virens	East, Central, West	Icteriidae	Invertebrate	Complete	Mid	Short	Night	Individual	Yes	No	Territorial	CA	Central America	
Henslow's Sparrow	Ammodramus henslowii	East	Passerellidae	Invertebrate	Complete	Short	Short	no data	no data	No	Yes	No	US	United States	
Song Sparrow	Melospiza melodia	East, Central, West	Passerellidae	Invertebrate	Partial	Mid	Short	Night	no data	Yes	No	Territorial	US	United States	
Dark-eved Junco (Slate-colored)	Junco hvemalis hvemalis	East	Emberizidae	Invertebrate	Partial	Short	Short	Night	no data	Yes	No	Territorial	US	United States	
Dark-eved Junco (Oregon)	hunco humalis oraganus	West	Emberizidae	Invertebrato	Partial	Short	Short	Night	no data	Vec	No	Territorial	US	United States	
Sark-cycu Junco (Oregon)	Sunco nyematis oreganus	Want	Emberizidae	Inventebrate	ratual Domi	Short	Short .	Night	no uata	1 CS	INU N.	Territorial	0.5	United States	
Jark-eyed Junco (Gray-headed)	Junco hyemalis caniceps	west	Emberizidae	invertebrate	Partial	Short	Short	rvight	no data	r es	NO	1 erritorial	05	United States	
Bobolink	Dolichonyx oryzivorus	East, Central	Icteridae	Invertebrate	Partial	Very long	Long	Night	Conspecific group	Yes	No	Territorial	SA	South America	
Baltimore Oriole	Icterus galbula	East, Central	Icteridae	Plant	Complete	Long	Long	Day and Night	Conspecific group	Yes	No	Territorial	CA	Central America	
Purple Finch	Haemorhous nurnureus	East. West	Fringillidae	Plant	no data	no data	no data	Night	no data	Yes	No	no data	US	United States	
	purpurcus					no unu	no und	B	44444					- mea ounco	
merican Goldfinch	Sninus tristis	East Central West	Fringillidee	Plant	Partial	Mid	Short	Dav	Conspecific group	Vec	Nc	no dete	US	United States	

Life history hypotheses and predictions

We hypothesized that changes to seasonality in the temperate region (Peñuelas and Filella 2001, Richardson et al. 2013, Vitasse et al. 2018, Zohner and Renner 2019) associated with climate change may change the costs and benefits of migration, leading to decreased migration and a southward shift in breeding distributions (Austin and Rehfisch 2005). With this hypothesis, we predicted that partial migrants, short-distance migrants, species with overlapping ranges, and species with wintering locations at higher latitudes would have breeding distribution centroids that shifted south, because these species are likely to be facultative migrants and adjust migratory programs in response to environmental factors (Ramenofsky et al. 2012). Conversely, we expected that complete migrants, long-distance migrants, species with disjunct ranges, and species that winter at low latitudes or in the southern hemisphere would exhibit northward shifts in breeding centroid because they would be more constrained by 'hard-wired' migratory schedules (Ramenofsky et al 2012). We used migration type, migration distance, overlap of breeding and wintering range, and average wintering latitude as covariates to explain distribution centroid shifts to test this hypothesis.

We hypothesized that climate change may cause changes to supplemental cues that influence migratory timing, cessation, and the onset of reproductive readiness (Gwinner 1977, Wingfield et al. 1992), leading to changes to migration and shifts in breeding distribution centroid. Here, we predicted that species that use different cues to assess resources, and that are exposed to different cues during migration would respond differently. We used diet, circadian migration patterns, and conspecific group size during migration to explain centroid shifts to test this hypothesis. Specifically, we predicted that herbivores, diurnal migrants, or species migrating in conspecific groups would have southward shifts in breeding distribution centroid relative to carnivores, nocturnal migrants, or species that do not migrate with conspecifics because green up is likely an important cue for food availability for herbivores and is advancing rapidly (Visser and Both 2005), diurnal migrants may receive more visual cues about resources and conditions during migration (Ward and Raim 2011), and social information can mediate responses to supplemental cues (Helm et al. 2006, Teitelbaum et al. 2016).

Finally, we hypothesized that mismatch between the availability of prey resources and the arrival and breeding of migratory birds (Visser and Both 2005, Saino et al. 2011) may result in a latitudinal selection gradient resulting in distribution centroid shifts. We used habitat specialization, territoriality, and presence of protandry (i.e. if males tend to arrive earlier on the breeding grounds) as covariates to examine if phenological mismatch has created a gradient. We predicted that specialists, territorial species, and protandrous species would exhibit southward shifts in breeding distribution centroids because they would be more likely to experience negative consequences of mismatch (Julliard et al. 2003, Helm et al. 2006, Jonzén et al. 2007, Day and Kokko 2015, Pearce-Higgins et al. 2015) than generalists, non-territorial species, and non-protandrous species, which we expected to would have northward shifts in centroid.

Model selection for life history trait analysis

We organized life history traits into three groups corresponding to our three hypotheses to explain centroid shifts: (1) migration type (complete or partial), migration distance, overlap of breeding and wintering range, and average wintering latitude to examine whether climate-driven changes in seasonality explained southward shifts in centroids; (2) diet (herbivore, insectivore, carnivore), circadian migration patterns, and conspecific group size during migration to examine the role of supplementary cues; and (3) habitat specialization, territoriality, and presence of protandry to examine whether phenological mismatch in northern breeding areas influenced shifts. For each of these three sets of covariates, we ran linear mixed models with all single covariates and possible combinations of covariates and a random effect of family. We ran all combinations and interactions in each region unless a covariate was limited by insufficient sample size or covariates were correlated within a region. We selected the best model from each hypothesis in each region using a combination of LOO-CV and Bayesian model stacking, and then created a final model set of the best models from each hypothesis and combinations of these models.

We used efficient leave-one-out cross validation (LOO-CV) via the R package loo (Vehtari et al. 2018) for model selection, and verified that LOO-CV model selection was not biased by small group sample sizes by comparing LOO-CV results with Bayesian model stacking model weights (Yao et al. 2018), because using LOO-CV to select a single best model from a set of many models can sometimes cause overfitting with small sample sizes (Piironen and Vehtari 2017). If the most-supported model by LOO-CV was not also the most-supported model by model stacking weights, we used the weights of the individual covariates to assess if interactions between covariates were causing overfitting of interaction levels with few observations. We did not use model weights of the full set of models on their own to determine the most-supported model because model stacking weights penalize covariates that appear across many models by splitting their weights across all models, so using the single covariate weights was the best way to assess if covariates were overfit.

Model Selection Results

Eastern Region

Table A3–A5. Model selection results for model set including (**A3**) migration type (Mig), migration distance (Dist1 with levels short, mid, long, very long; or Dist2 with levels short, long), whether breeding and wintering distributions overlap (Overlap), and wintering latitude (Wint); (**A4**) primary diet type (Diet), migration time (Time), and migratory group size (Group); and (**A5**) habitat specialization (Hab), whether species are territorial (Terr), and presence of differential migration by sex (Sex) in the eastern region, from leave-one-out cross validation and Bayesian model stacking (BMS) weights. All models include a random effect of taxonomic family. Models are in ordered most-supported to least-supported based on Expected Log Pointwise Posterior Density (ELPD) from LOO-CV. The models used to determine the most-supported model across the three hypotheses is indicated in bold.

MODEL	ELPD DIFF	ELPD LOO	SE ELPD	Eff Pars LOO	SE Eff Pars	LOO IC	SE LOO IC	BMS Weight
Intercept	0	-131.7	6.5	16.2	3.5	263.5	13.0	0.461
Dist2	-0.8	-132.6	6.3	18	3.4	265.1	12.6	0.271
Wint	-0.8	-132.6	6.8	19.4	3.9	265.2	13.7	0.267
Overlap	-1.5	-133.2	6.3	16.9	3.3	266.4	12.6	0
Mig	-2.1	-133.8	6.3	16.9	3.3	267.7	12.6	0
Dist1	-4.7	-136.5	6.6	19.2	3.8	273	13.2	0

Tal	ble A	43	Eastern 1	Region

Table A4Eastern Region

	ELPD							
MODEL	DIFF	ELPD LOO	SE ELPD	Eff Pars LOO	SE Eff Pars	LOO IC	SE LOO IC	BMS Weight
Diet	0	-127.9	6.2	10.7	2.7	255.8	12.5	0.516
Diet + Time	-0.8	-128.7	6.4	11.9	3	257.3	12.7	0.369
Diet + Group	-2.7	-130.6	6	11.9	2.7	261.1	12.0	0
Diet ×Time	-3.3	-131.2	6.3	13.5	3.3	262.3	12.7	0
Intercept	-3.8	-131.7	6.5	16.2	3.5	263.5	13.0	0.041
Diet + Time + Group	-4.5	-132.4	6.4	15.1	3.4	264.7	12.9	0
Time	-6.4	-134.3	6.4	18.8	3.6	268.6	12.9	0
Group	-7.8	-135.7	7	17.4	3.8	271.3	14.0	0.073
Time + Group	-9.9	-137.8	6.9	19.5	3.8	275.5	13.8	0

MODEL	ELPD DIFF	ELPD LOO	SE ELPD	Eff Pars LOO	SE Eff Pars	LOO IC	SE LOO IC	BMS Weight
Sex	0	-131.4	7	17.2	3.7	262.7	13.9	0.553
Intercept	-0.4	-131.7	6.5	16.2	3.5	263.5	13	0.157
Sex + Terr	-1	-132.3	6.1	17.9	3.4	264.6	12.2	0.290
Sex + Hab	-1.4	-132.7	6.8	17.8	3.6	265.4	13.6	0
Hab	-1.8	-133.1	6.5	16.9	3.4	266.3	13	0
Terr	-2.3	-133.6	5.8	17.1	3.3	267.3	11.5	0
Sex + Hab + Terr	-2.8	-134.1	6.3	19.1	3.5	268.3	12.6	0
Hab + Terr	-3.3	-134.7	6	18.3	3.4	269.4	11.9	0

Table A5Eastern Region

Eastern Region

Table A6. Bayesian model stacking weights for single covariates in the eastern region, for each set of covariates corresponding to the three hypotheses: (1) migration type (Mig), migration distance (Dist1 with levels short, mid, long, very long; or Dist2 with levels short, long), whether breeding and wintering distributions overlap (Overlap), and wintering latitude (Wint); (2) primary diet type (Diet), migration time (Time), and migratory group size (Group); and (3) habitat specialization (Hab), whether species are territorial (Terr), and presence of differential migration by sex (Sex).

Нуро	othesis 1	Нуро	othesis 2	Hypothesis 3			
Covariate	BMS Weight	Covariate	BMS Weight	Covariate	BMS Weight		
Intercept	0.461	Diet	0.861	Sex	0.828		
Dist2	0.271	Group	0.082	Terr	0.171		
Wint	0.267	Intercept	0.057	Intercept	0.001		
Туре	0	Time	0	Hab	0		
Overlap	0						

Eastern Region

Table A7. Model selection results for model set including covariates from most-supported model from each single-hypothesis model set (Table A3-A5) and combinations of these covariates in the eastern region, from leave-one-out cross validation and Bayesian model stacking (BMS) weights. All models include a random effect of taxonomic family. Models are in ordered most-supported to least-supported based on Expected Log Pointwise Posterior Density (ELPD) from LOO-CV, although model weights were also considered to determine most-supported model because LOO-CV can cause overfitting with small sample sizes. The most-supported model used for inference is indicated in bold.

	ELPD	ELPD		Eff Pars	SE Eff		SE	BMS
MODEL	DIFF	LOO	SE ELPD	LOO	Pars	LOO IC	LOO IC	Weight
Diet + Sex	0	-126.4	6.2	10.5	2.4	252.7	12.5	0.732
Diet	-1.5	-127.9	6.2	10.7	2.7	255.8	12.5	0.016
Diet + Dist2	-3.2	-129.6	5.8	12.4	2.7	259.1	11.7	0
Diet + Sex + Dist2	-3.3	-129.7	6.5	13.9	3.3	259.3	13.1	0
$Diet \times Dist2$	-4.7	-131	5.4	17.1	3.4	262	10.8	0.170
Sex	-5	-131.4	7	17.2	3.7	262.7	13.9	0.005
Intercept	-5.4	-131.7	6.5	16.2	3.5	263.5	13	0

Dist2	-6.2	-132.6	6.3	18	3.4	265.1	12.6	0.076

Western Region

Table A8–A10. Model selection results for model set including (A8) migration type (Mig), migration distance (Dist1 with levels short, mid, long, very long; or Dist2 with levels short, long), whether breeding and wintering distributions overlap (Overlap), and wintering latitude (Wint); (A9) primary diet type (Diet), migration time (Time), and migratory group size (Group); and (A10) habitat specialization (Hab), whether species are territorial (Terr), and presence of differential migration by sex (Sex) in the western region, from leave-one-out cross validation and Bayesian model stacking (BMS) weights. All models include a random effect of taxonomic family. Models are in ordered most-supported to least-supported based on Expected Log Pointwise Posterior Density (ELPD) from LOO-CV, although model weights were also considered to determine most-supported model because LOO-CV can cause overfitting with small sample sizes. The models used to determine the most-supported model across the three hypotheses is indicated in bold.

MODEL	ELPD DIFF	ELPD LOO	SE ELPD	Eff Pars LOO	SE Eff Pars	LOO IC	SE LOO IC	BMS Weight
Intercept	0	-119.3	8.9	6	2.5	238.7	17.8	0.956
Overlap	-0.8	-120.1	8.8	6.6	2.6	240.2	17.5	0
Mig	-0.8	-120.2	8.5	6.7	2.5	240.3	17	0
Wint	-2	-121.3	8.9	8.3	3.3	242.7	17.8	0
Dist2	-2.8	-122.1	8.8	9.1	3.5	244.3	17.7	0
Dist1	-3.8	-123.1	9.6	10.6	4.5	246.3	19.2	0.044

Table A8Western Region

MODEL	ELPD DIFF	ELPD LOO	SE ELPD	Eff Pars LOO	SE Eff Pars	LOO IC	SE LOO IC	BMS Weight
Diet	0	-118.9	8.2	6.5	2.5	237.8	16.4	0.681
Intercept	-0.4	-119.3	8.9	6	2.5	238.7	17.8	0.319
Diet + Time	-2	-120.9	8	8	2.7	241.8	15.9	0
Time	-2.1	-121	8.4	7.3	2.6	241.9	16.8	0
Group	-3.4	-122.3	8.8	9.3	3.5	244.6	17.7	0
Diet + Group	-3.6	-122.5	8.8	10.1	3.7	245	17.6	0
Diet × Time	-4	-122.9	7.5	9	2.6	245.7	15	0
Time + Group	-5.8	-124.7	9.3	11.4	4.3	249.4	18.5	0
Diet + Time + Group	-6	-124.9	8.5	11.7	3.9	249.7	17.1	0

Table A9 Western Region

MODEL	ELPD DIFF	ELPD LOO	SE ELPD	Eff Pars LOO	SE Eff Pars	LOO IC	SE LOO IC	BMS Weight
Sex	0	-119.1	8.6	6	2.3	238.2	17.2	0.620
Intercept	-0.2	-119.3	8.9	6	2.5	238.7	17.8	0.380
Sex + Hab	-0.9	-120	8.4	6.5	2.4	240.1	16.9	0
Hab	-1	-120.1	8.8	6.4	2.6	240.2	17.5	0
Terr	-1.1	-120.2	8.3	6.4	2.3	240.4	16.6	0
Sex + Terr	-1.5	-120.6	8.3	7.1	2.4	241.1	16.7	0
Sex + Hab + Terr	-1.7	-120.8	8	6.9	2.2	241.7	16	0
Hab + Terr	-2	-121.1	8.3	6.9	2.4	242.1	16.5	0

Table A10Western Region

Table A11. Bayesian model stacking weights for single covariates in the western region, for each set of covariates corresponding to the three hypotheses: (1) migration type (Mig), migration distance (Dist1 with levels short, mid, long, very long; or Dist2 with levels short, long), whether breeding and wintering distributions overlap (Overlap), and wintering latitude (Wint); (2) primary diet type (Diet), migration time (Time), and migratory group size (Group); and (3) habitat specialization (Hab), whether species are territorial (Terr), and presence of differential migration by sex (Sex).

Hypothesis 1		Нуро	othesis 2	Hypothesis 3		
Covariate	BMS Weight	Covariate	BMS Weight	Covariate	BMS Weight	
Intercept	0.956	Diet	0.672	Sex	0.694	
Dist1	0.044	Intercept	0.328	Intercept	0.306	
Overlap	0	Time	0	Hab	0	
Mig	0	Group	0	Terr	0	
Wint	0					

Western Region

Table A12. Model selection results for model set including covariates from most-supported model from each single-hypothesis model

 set (Table A8–A10) and combinations of these covariates in the western region, from leave-one-out cross validation and Bayesian

 model stacking (BMS) weights. All models include a random effect of taxonomic family. Models are in ordered most-supported to

 least-supported based on Expected Log Pointwise Posterior Density (ELPD) from LOO-CV, although model weights were also

 considered to determine most-supported model because LOO-CV can cause overfitting with small sample sizes. The most-supported

MODEL	ELPD DIFF	ELPD LOO	SE ELPD	Eff Pars LOO	SE Eff Pars	LOO IC	SE LOO IC	BMS Weight
Diet	0	-118.9	8.2	6.5	2.5	237.8	16.4	0.552
Sex	-0.2	-119.1	8.6	6	2.3	238.2	17.2	0.448
Intercept	-0.4	-119.3	8.9	6	2.5	238.7	17.8	0
Diet + Sex	-0.5	-119.4	8.1	6.9	2.5	238.7	16.3	0
$Diet \times Sex$	-1.1	-120	7.9	7.3	2.4	240.1	15.8	0

model used for inference is indicated in bold.

Central Region

Table A13–A15. Model selection results for model set including (A13) migration type (Mig), migration distance (Dist1 with levels short, mid, long, very long; or Dist2 with levels short, long), whether breeding and wintering distributions overlap (Overlap), and wintering latitude (Wint); (A14) primary diet type (Diet), migration time (Time), and migratory group size (Group); and (A15) whether species are territorial (Terr) and presence of differential migration by sex (Sex) in the central region, from leave-one-out cross validation and Bayesian model stacking (BMS) weights. Some covariates included in other regions were not included in models for the central region because there was not adequate sample size in this region. All models include a random effect of taxonomic family. Models are in ordered most-supported to least-supported based on Expected Log Pointwise Posterior Density (ELPD) from LOO-CV, although model weights were also considered to determine most-supported model because LOO-CV can cause overfitting with small sample sizes.

MODEL	ELPD DIFF	ELPD LOO	SE ELPD	Eff Pars LOO	SE Eff Pars	LOO IC	SE LOO IC	BMS Weight
Mig	0	-127.8	10.6	8.2	4.2	255.6	21.1	0.711
Overlap	-0.9	-128.7	10.9	8.5	4.5	257.5	21.9	0
Intercept	-1.2	-129.0	11.6	8.5	4.7	258.0	23.1	0
Wint	-1.2	-129.0	11.6	9.3	5.0	258.0	23.2	0.289
Dist1	-2.3	-130.1	10.8	12.4	5.4	260.1	21.7	0
Dist2	-2.8	-130.6	11.3	11.1	5.3	261.2	22.6	0

Table A13Central Region

MODEL	ELPD DIFF	ELPD LOO	SE ELPD	Eff Pars LOO	SE Eff Pars	LOO IC	SE LOO IC	BMS Weight
Diet	0	-128.9	10.8	9.6	5.2	257.9	21.6	0.534
Intercept	-0.1	-129	11.6	8.5	4.7	258	23.1	0.466
Diet + Time	-1	-130	10.3	10.7	5	259.9	20.6	0
Time	-1.2	-130.1	10.5	9.5	4.4	260.2	21	0
Diet \times Time	-1.4	-130.3	10	10.5	4.8	260.7	20	0
Diet + Group	-2.7	-131.7	10.8	13.3	6.1	263.3	21.6	0
Group	-2.9	-131.8	11.5	13.2	6.3	263.7	23.1	0
Group + Time	-4	-133	10.3	13.8	5.7	265.9	20.6	0.001
Diet + Group + Time	-4.1	-133	10.2	14.3	5.8	266	20.3	0

Table A14Central Region

Tal	ble	A15	Central	l Region

MODEL	ELPD DIFF	ELPD LOO	SE ELPD	Eff Pars LOO	SE Eff Pars	LOO IC	SE LOO IC	BMS Weight
Sex	0	-128.9	11.1	8.6	4.6	257.8	22.1	0.574
Intercept	-0.1	-129.0	11.6	8.5	4.7	258.0	23.1	0.427
Sex + Terr	-1.5	-130.4	10.9	10.6	4.8	260.9	21.8	0
Terr	-1.9	-130.8	11.1	10.7	4.8	261.7	22.2	0

Central Region

Table A16. Bayesian model stacking weights for single covariates in the central region, for each set of covariates corresponding to the three hypotheses: (1) migration type (Mig), migration distance (Dist1), whether breeding and wintering distributions overlap (Overlap), and wintering latitude (Wint); (2) primary diet type (Diet), migration time (Time), and migratory group size (Group); and (3) whether species are territorial (Terr) and presence of differential migration by sex (Sex).

Hypothesis 1		Нуро	othesis 2	Hypothesis 3		
Covariate	BMS Weight	Covariate	BMS Weight	Covariate	BMS Weight	
Mig	0.712	Diet	0.519	Sex	0.586	
Wint	0.288	Intercept	0.481	Intercept	0.414	
Intercept	0	Time	0	Terr	0	
Dist1	0	Group	0			
Overlap	0					

*Habitat specialist was not included in this region because of insufficient sample size

Table A17. Model selection results for model set including covariates from most-supported model from each single-hypothesis model set (Table A13–A15) and combinations of these covariates in the central region, from leave-one-out cross validation and Bayesian model stacking (BMS) weights. All models include a random effect of taxonomic family. Models are in ordered most-supported to least-supported based on Expected Log Pointwise Posterior Density (ELPD) from LOO-CV, although model weights were also considered to determine most-supported model because LOO-CV can cause overfitting with small sample sizes. The most-supported model used for inference is indicated in bold.

MODEL	ELPD DIFF	ELPD LOO	SE ELPD	Eff Pars LOO	SE Eff Pars	LOO IC	SE LOO IC	BMS Weight
Mig	0	-127.8	10.6	8.2	4.2	255.6	21.1	0.333
Mig + Diet	-0.2	-128	9.8	9.9	4.7	256	19.5	0.438
Mig + Sex	-0.7	-128.5	10.5	8.9	4.3	256.9	20.9	0
Sex	-1.1	-128.9	11.1	8.6	4.6	257.8	22.1	0
Diet	-1.1	-128.9	10.8	9.6	5.2	257.9	21.6	0.002
Intercept	-1.2	-129	11.6	8.5	4.7	258	23.1	0.228
Mig + Diet + Sex	-1.2	-129	9.9	10.4	4.9	258	19.8	0
Diet + Sex	-1.3	-129.1	10.2	9.5	4.8	258.2	20.4	0

$Mig \times Sex$	-1.5	-129.4	10.6	9.7	4.6	258.7	21.2	0
$Diet \times Sex$	-1.7	-129.5	10.3	9.7	4.9	258.9	20.6	0
$Mig \times Diet$	-1.8	-129.6	9	12.1	4.7	259.3	18.0	0

References

- Austin, G.E. and M.M. Rehfisch. 2005. Shifting nonbreeding distributions of migratory fauna in relation to climatic change. *Global Change Biol.* 11: 31-38.
- Day, E. and H. Kokko. 2015. Relaxed selection when you least expect it: why declining bird populations might fail to respond to phenological mismatch. *Oikos* 124: 62-68.

Gwinner, E. 1977. Circannual rhythms in bird migration. Annu. Rev. Ecol. Syst. 8: 381-405.

- Helm, B., T. Piersma, and H. van der Jeugd. 2006. Sociable schedules: interplay between avian seasonal behavior and social behavior. *Anim. Behav.* 72: 245-262.
- Jonzén, N., A. Hedenström, and P. Lundberg. 2007. Climate change and the optimal arrival time of migratory birds. *Proc. R. Soc. B.* 274: 269-274.
- Julliard, R., F. Jiguet, and D. Couvet. 2003. Common birds facing global changes: what makes a species at risk? *Global Change Biol.* 10: 148-154.
- Pearce-Higgins, J.W., S.M. Eglington, B. Martay, and D.E. Chamberlain. 2015. Drivers of climate change impacts on bird communities. J. Anim Ecol. 84: 943-954.
- Peñuelas, J. and I. Filella. 2001. Responses to a warming world. Science 294: 793-795.
- Piironen, J. and A. Vehtari. 2017. Comparison of Bayesian predictive methods for model selection. *Statistics and Computing* 27: 711-735.
- Ramenofsky, M., J.M. Cornelius, and B. Helm. 2012. Physiological and behavioral responses of migrants to environmental cues. J. Ornithol. 153: 181-191.
- Richardson, A.D., T.F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, and M. Toomey. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. *Agricultural and Forest Meteorology* 169: 156-173.

- Rodewald, P. (Editor). 2015. The Birds of North America: https://birdsna.org. Cornell Laboratory of Ornithology, Ithaca, NY.
- Saino, N., R. Ambrosini, D. Rubolini, J. von Hardenberg, A. Provenzale, K. Hüppop, O.
 Hüppop, A. Lehikoinen, E. Lehikoinen, K. Rainio, M. Romano, and L. Sokolov. 2010.
 Climate warming, ecological mismatch at arrival and population decline in migratory birds. *Proc. R. Soc. B* 278: 20101778.
- Teitelbaum, C.S., S.J. Converse, W.F. Fagan, K. Böhning-Gaese, R.B. O'Hara, A.E. Lacy, and T. Mueller. Experience drives innovation of new migration patterns of whooping cranes in response to global change. *Nature Communications* 7: 12793.
- Visser, M.E., and C. Both. 2005. Shifts in phenology due to global climate change: the need for a yardstick. *Proc. R. Soc. B* 272: 2561-2569.
- Vitasse, Y., C. Signarbieux, and Y.H. Fu. 2018. Global warming leads to more uniform spring phenology across elevations. *Proc. Natl. Acad. Sci. USA* 115: 1004-1008.
- Ward, M.P. and A. Raim. 2011. The fly-and-social foraging hypothesis for diurnal migration:why American crows migrate during the day. *Behav. Ecol. and Sociobiol.* 65: 1411-1418.
- Wingfield, J.C., T.P. Hahn, R. Levin, and P. Honey. 1992. Environmental predictability and control of gonadal cycles in birds. *J. Exp. Zool.* 261: 214-231.
- Yao, Y., A. Vehtari, D. Simpson, and A. Gelman. 2018. Using stacking to average Bayesian predictive distributions (with discussion). *Bayesian Analysis* 13: 917-1007.
- Zohner, C.M. and S.S. Renner. 2019. Ongoing seasonally uneven climate warming leads to earlier autumn growth cessation in deciduous trees. *Oecologia* 189: 549-561.