Appendix 1. Distinguishing between travel and stopover days

Daily travel speeds (in km/d) of migrating marsh harriers *Circus aeruginosus* were calculated for segments that were defined by ‘best of duty cycle locations’ (see main text). The frequency distribution of (log-transformed) daily travel speeds revealed two peaks; i.e. this distribution was bi-modal (Fig. A).

The fit of the sum of two normal distributions with a probability density of \(q \cdot N(\mu_1, \sigma_1) + (1 - q) \cdot N(\mu_2, \sigma_2) \), where \(q \) is a scaling coefficient between 0 and 1, was compared with that of a single normal distribution \(N(\mu, \sigma) \), with mean \(\mu \) and standard deviation \(\sigma \). Taking the difference between the number of estimated parameters into account, the bi-normal distribution indeed fitted significantly better than the single normal distribution (log-likelihood ratio test, \(X^2 = 148.5, P < 0.001 \); Sokal and Rohlf 1995).

The first distribution (green curve in Fig. A) has a mean of 8.9 km/d (back-transformed value), and is thought to be related to stopover days, and days with slow progress due to intensive fly-and-forage migration (Strandberg and Alerstam 2007). The second distribution (red dashed curve in Fig. A) has a mean of 183.7 km/d, and is thought to be related to travel days. The intercept of these curves (50.3 km/d) can be seen as a threshold value that distinguishes between travel days (daily speeds > 50.3) and stopover days (daily speeds < 50.3).

References
